Substrate volume and nursery times for earliness and yield of greenhouse tomato

Gabino A. Martínez-Gutiérrez, Isidro Morales*, Teodulfo Aquino-Bolaños, Cirenio Escamisosa-Tinoco, Martín Hernández-Tolentino
Instituto Politécnico Nacional, CIIDIR-Oaxaca, 71230, Oaxaca, México

ABSTRACT

In nurseries, seedling management can be an option to increase the yield and earliness of the harvest of Solanum lycopersicum L. in the greenhouse. The objective of this study was to evaluate substrate volumes and days in nursery of tomato seedlings evaluating root and seedling height, as well as, their effects on harvest earliness and yield. Two independent and consecutive experiments were carried out. The first experiment was done in the nursery where the volumes 22, 100, 150, 250, 350 and 450 cm3 substrate and, 30, 40, 50 and 60 nursery days were evaluated. The control was 22 cm3 and 30 days. The variables evaluated were: Seedling height, stem diameter, length and volume of the root and fresh and dry root weight. The second experiment was the cultivation of seedlings in composted maguey bagasse, agrolite and the normal soil as the control. The response variables were days till harvest after transplanting and total yield. Both experiments were conducted in a randomized complete block, with three repetitions and twenty plants per experimental unit. In the nursery, all variables increased with the increasing of substrate volume and nursery time. In cultivation, the highest total yield (8.20 kg plant$^{-1}$) were obtained with seedlings produced with 22 cm3 volume of substrate and 30 nursery days. Seedlings with substrates volumes greater than 100 cm3 and more than 40 days in the nursery began the fruit ripening and harvest 60 days after transplantation. The control initiated it at 90 days.

Keywords: Earliness; Yield; Nursery; Solanum lycopersicum; Substrate volume

INTRODUCTION

Tomato (S. lycopersicum L.) is the most cultivated and most important vegetable in the world (FAO, 2015). In Mexico, in the last 50 years, the cultivation of S. lycopersicum went from an extensive open air in-ground system to a hydroponic greenhouse system. The combination of advanced greenhouses, fertigation and soilless culture has helped tomato to achieve yields higher than 600 t ha$^{-1}$ (Salazar et al., 2012). The initial investment under this production system is high, 70% of the cost is the greenhouse and drip irrigation, while the other 30% is inputs and labor of cultivation. On average, the time from tomato transplant to harvest is 90 days in warm regions and 105 days in temperate and cold regions. During this time, spending on inputs and labor is high and no sales incomes of the fruit are perceived (Martínez-Gutiérrez et al., 2014). This emphasizes the need to generate technologies to reduce the time from transplant to harvest. In intensive horticulture, a rarely unexplored option is the use of different sizes and shapes of containers for seedling production in the nursery, as well as, the time they can stay in this stage without affecting post-transplant survival, yield and the beginning of the harvest.

In Mexico, the agro industry that produces tomato seedlings (S. lycopersicum L.), in a nursery, usually uses expanded polystyrene containers of 200 cavities; each cavity containing 22 cm3 of substrate volume. This small volume of substrate allows the productions and commercialization of larger quantities of seedlings per m2, use less substrate, reduce costs and facilitate the handling of containers in the nursery (Poorter et al., 2012). However, in these nurseries, the physiological and morphological parameters of the seedlings needed for optimal development are not considered, nor are the effects they can have on growth and yield after transplant (Sanchez et al., 2012; Urrestarazu, 2015). A small volume of cavity or container uses little substrate, reduces the availability of water and nutrients to the plant and restricts...
root growth (Poorter et al., 2012; Urrestarazu, 2015), causing hypoxia and etiolation of the shoot, factors that affect seedling quality and behavior after transplanting. In forest species, the type and size of the container is directly related to the root morphology and shoot development, it also influences greatly in the success of the crop (Muñoz et al., 2011; Thetford et al., 2005; South et al., 2005). In vegetables like tomato (Solanum lycopersicum L.), Kemble et al. (1994) and Ruff et al. (1987) by increasing in 20% the container volume, the time from sowing to the anthesis was reduced. Nesmith et al. (1992) using small containers in nurseries for pepper (Capsicum annuum L.), cantaloupe (Cucumis melo) and tomato (Solanum lycopersicum L.) found lower volume root, water consumption and less nourished plants, this factors decreased post-transplant survival as well as quality and yield of fruit. Meanwhile, Cooper et al. (2002) reported that in tomato, by increasing the volume of the cavity, the flowering and harvesting earliness increased. Using seedlings originating from apical cuttings of 30 cm length, the tomato harvest began 70 days after transplant, a 50 days reduction compared to seedlings originating from seed (De Bruin and Sande, 1986; Juárez et al., 2000).

The objective of this study was to evaluate the effect of substrate volume and residence times in the nursery on yield and harvest earliness of S. lycopersicum L. in substrates and soil under greenhouses.

MATERIALS AND METHODS

Two experiments were conducted from April to November 2014. The first one was done in the nursery, the second one in cultivation for yield and earliness of harvest. Both were carried at the Interdisciplinary Center of Research for Regional Integral Development of the National Polytechnic Institute, Unit Oaxaca (CIIDIR-IPN-Oaxaca) in Santa Cruz Xoxocotlan, Mexico (17° 13’ 21.28” LN, 96° 44’ 33.19” LO and 1550 m) under a multi-tunnel greenhouse (Castilla, 2007) with a metal structure and a covering of white low density polyethylene. The plant material was tomato (S. lycopersicum L. cultivar El Cid) of indeterminate growth and “pear” or “saladette” fruit type, from Harris Moran Company®.

Experiment 1: Volume substrate and nursery days

The substrate used in the nursery was a mixture of peat Sphagnum® - perlite in 4:1 (v/v) and as containers “Styrofoam” cups of cylindrical type of Convermex® Company.

The experimental design was done in randomized complete block with three repetitions and a factorial arrangement of treatments, which were: Six volumes of substrate (22, 100, 150, 250, 350 and 450 cm³) and four residence times in the nursery (30, 40, 50 and 60 days); the combination of cells of 22 cm³ volume and 30 days in the nursery as control, 24 treatments in total. Each treatment had 60 seedlings, 20 were placed as a border against edge effect, and 40 in full competition, of which 20 were used for the first experiment and the other 20 were used for the second experiment. The sprinkler irrigation was done with a Swissmex® backpack hand sprayer of 15 L. Nutrient applications were made daily, using a solution of 75, 20 and 75 mg L⁻¹ of N, P and K, respectively. The variables evaluated at the end of each residence time in the nursery were: Seedling height (cm) from the stem base to the apex; stem diameter (mm) measured with a digital vernier; raceme. Drip irrigation was used and the nutrient solution in mg L⁻¹: N = 250, P = 60, K = 300, S = 200, Mg = 75, Fe = 3, Mn = 0.5, B = 0.5, Cu = 0.1, Zn = 0.1 was applied at 100% concentration in the substrates and 50% in soil. The variables analyzed were earliness of harvest and total yield (kg plant⁻¹). Earliness of harvest was determined as the days required for the plant to reach commercial maturity of the fruit post-transplant, while total yield (kg plant⁻¹) was determined as the sum of the eight cuts, including commercial and noncommercial fruits.

In both experiments, an analysis of variance and comparison of means with the Tukey test (P ≤ 0.05) was obtained, for each variable evaluated. Statistical analyzes were performed using SAS program, version 9.0 (SAS Institute, 2002). For the second experiment, the response surface methodology was used using a second-order polynomial model (Montgomery, 2006) and, to analyze it MATLAB® R2009a (Version R2009a, the MathWorks Inc., Massachusetts, USA) software was used.

Experiment 2: From transplant to harvest

A randomized complete block experimental design with a complete factorial arrangement of treatments of 6 x 4 x 3 was used to analyze six volumes of substrate, four residence times in the nursery and three culture systems: Agrolite, composted maguey bagasse (Martínez-Gutiérrez et al., 2015) and normal soil as the control, what generated 72 treatments with three repetitions and twenty plants per experimental unit. The substrates of composted maguey bagasse and agrolite had particles of 1.19 and 2.00 mm in diameter and black polyethylene bags of 18 L as containers. Each substrate corresponded with a treatment and soil functioned as control. The planting density was 3.5 plants m², using only one steam limited until the sixth raceme. Drip irrigation was used and the nutrient solution in mg L⁻¹: N = 250, P = 60, K = 300, S = 200, Mg = 75, Fe = 3, Mn = 0.5, B = 0.5, Cu = 0.1, Zn = 0.1 was applied at 100% concentration in the substrates and 50% in soil. The variables analyzed were earliness of harvest and total yield (kg plant⁻¹). Earliness of harvest was determined as the days required for the plant to reach commercial maturity of the fruit post-transplant, while total yield (kg plant⁻¹) was determined as the sum of the eight cuts, including commercial and noncommercial fruits.
RESULTS AND DISCUSSION

Substrate volumes and nursery days
Substrate volume, residence times in the nursery and their interaction showed significant effects ($P \leq 0.05$) in seedling height, stem diameter, length and volume of the root, and dry and fresh root weight (Table 1). The plants showed a higher growth when they spent more time in the nursery and with a greater volume of substrate.

Seedlings produced with 450 cm3 of substrate and 60 days in the nursery were the tallest (56.55 cm) (Table 2). They also reached high values: Stem diameter (7.80 mm), length (59.50 cm) and volume (44.50 cm3) of the root and, fresh (42.50 g) and dry (4.14 g) root weight (Table 2). Seedlings of 14.26 and 16.97 cm height were obtained using volume of substrate of 22 and 100 cm3 and 30 days in the nursery. These results were similar to the ones obtained by Sánchez et al. (2012) using substrate volumes of 36.8 and 85.9 cm3 (14.39 and 16.29 cm, respectively).

Seed companies for transplantation of *Solanum lycopersicum* L. recommend both heights. Seedlings produced in cells or containers of larger volumes show little root restriction; therefore, optimizing nutrients, water and light which promotes greater expansion of leaves, stems and roots (Oviedo et al., 2012; Oagile et al., 2016).

Using the smallest volume of substrate (22 cm3) and least time in the nursery (30 days), the seedlings showed the lowest values for most variables evaluated.

Roots compete for water, nutrients, space and oxygen when they are confined in a container that restricts their growth. The geometry of the container also directly influences the availability of these resources (Nesmith and Duval, 1998). A consequence of the use of small containers for the propagation of seedlings is that as the seedlings grow, water demand increases and causes water stress response in the root growth, as well as, the decrease of seedlings appearance (Sánchez et al., 2006); which affects their quality and behavior after the transplant (Sakurai et al., 2007).

Table 1: Analysis of variance and statistical significance of variables in root and seedling variables of *S. lycopersicum* L. in nursery stage

<table>
<thead>
<tr>
<th>Variables</th>
<th>Substrate volume (SV) (5)</th>
<th>Nursery times (NT) (3)</th>
<th>SV*NT</th>
<th>Error (24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>517.26**</td>
<td>1004.12**</td>
<td>129.54**</td>
<td>1.059</td>
</tr>
<tr>
<td>length</td>
<td>865.04**</td>
<td>1318.79**</td>
<td>81.59**</td>
<td>3.63</td>
</tr>
<tr>
<td>Fresh weight</td>
<td>426.45**</td>
<td>357.78**</td>
<td>83.98**</td>
<td>2.49</td>
</tr>
<tr>
<td>Dry weight</td>
<td>12.04**</td>
<td>0.67**</td>
<td>0.04**</td>
<td>0.01</td>
</tr>
<tr>
<td>Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seedling height</td>
<td>5235.21**</td>
<td>16856.20**</td>
<td>136.74**</td>
<td>50.36</td>
</tr>
<tr>
<td>Stem diameter</td>
<td>41.01**</td>
<td>32.92**</td>
<td>0.63**</td>
<td>0.492</td>
</tr>
</tbody>
</table>

In parenthesis are the degrees of freedom that correspond to each source of variation, **Highly significant with $P \leq 0.01$.

Total yield
The total yield varied in all factors evaluated, as well as their interactions. In earliness of harvest significant differences were found ($P \leq 0.05$) among substrate volume, culture systems and the interaction of substrates volumes and culture systems (Table 3). The residence time for seedlings of *S. lycopersicum* L. in the nursery did not affect harvest earliness which can in turn influence the cost of the plant, by staying for more than 30 days in the nursery.

The total yield of the fruits of *S. lycopersicum* L. was significantly lower in maguey bagasse and agrolite than in normal soil, and in the three culture systems, the total yield decreased by increasing the days in the nursery and the volume of substrate.

The second-order polynomial model was the most adjusted for the three culture systems with R^2 of 0.9904 for soil, 0.9915 for agrolite and 0.9694 for composted maguey bagasse (Table 4).

Response surface analysis showed that *S. lycopersicum* L. plant, cultivated in soil with 22 cm3 of substrate volume and 30 days in the nursery obtained the maximum yield, on average: 8.30 kg plant$^{-1}$ (Fig. 1a). By increasing the substrate volume 150, 250, 350 and 450 cm3 without altering the 30 nursery days, the average yield was similar (8.20 kg plant$^{-1}$) which means the total yield did not significantly increase. These results contradict what Cooper et al. (2002) mentioned, that a greater volume of substrate per seedling in nursery influences the fruit size and consequently, the total yield of the harvest (2002). However, it reinforces the results obtained by Sánchez et al. (2012) who did not find significant differences in average fruit weight and yield per plant in tomato, by increasing the volume of substrate in seedlings of 12.3 to 85.9 cm3.

According to the response surface methodology, of the three culture systems the lower yield (3.8 kg plant$^{-1}$) was obtained on the substrate of agrolite and tomato seedlings that remained 60 days in the nursery with...
450 cm3 volume of substrate (Fig. 1b). Increased substrate volumes and two months of the seedling in the nursery caused larger quantity, length and fresh weight of roots (Table 2). However, in tomato this large amount of roots at the transplant were physiologically inactive as shown by Peterson et al. (1991) who indicate that restriction of the roots caused by a reduced volume in the nursery provoke loss of primary and post-transplant roots, increases the

<table>
<thead>
<tr>
<th>Days</th>
<th>Substrate volume cm3</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>14.26Cc* 16.97Bc 18.06BCb 20.84Bc 20.73Bb 27.74Ab</td>
<td>24.46</td>
</tr>
<tr>
<td>40</td>
<td>34.45Ca 31.99Cb 39.14Ba 41.81Ba 44.56Ba 53.16Aa</td>
<td>7.00</td>
</tr>
<tr>
<td>50</td>
<td>27.23Cb 39.65Ba 43.04Ba 42.97Bb 46.94Ba 55.18Aa</td>
<td>6.42</td>
</tr>
<tr>
<td>60</td>
<td>26.44Db 36.69Ca 42.68Ca 54.09ABa 48.89Ba 56.55Aa</td>
<td>13.22</td>
</tr>
<tr>
<td>CV</td>
<td>12.58 10.42 15.24 18.14 14.01 17.29</td>
<td>14.02</td>
</tr>
</tbody>
</table>

Table 2: Seedling height and variables of root of S. lycopersicum L. as response to different substrate volumes and nursery times

<table>
<thead>
<tr>
<th>Days</th>
<th>Substrate volume cm3</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>30.00Bc 5.06Ab 4.99Ab 4.88Ab 5.26Ab 5.56Ab</td>
<td>12.61</td>
</tr>
<tr>
<td>40</td>
<td>4.27Db 5.73Ca 6.58Ca 6.57Ba 7.30Aa 7.97Aa</td>
<td>3.65</td>
</tr>
<tr>
<td>50</td>
<td>3.82Db 5.76Ca 6.24Ba 6.24Ba 6.96Aa 7.57Aa</td>
<td>9.01</td>
</tr>
<tr>
<td>60</td>
<td>5.13Ca 6.31Ba 6.43Ba 6.17Ba 6.89Ba 7.80Aa</td>
<td>8.91</td>
</tr>
<tr>
<td>CV</td>
<td>12.58 10.42 15.24 18.14 14.01 17.29</td>
<td>17.29</td>
</tr>
</tbody>
</table>

Table 3: Significance of factors: Volumes substrate, nursery times and culture systems and their interactions on the total yield and earliness of the harvest of S. lycopersicum L.

Table 4: Response surface analysis model fitting using LOESS (Cleveland, 1979) of each culture substrate of S. lycopersicum L.

CV: Coefficient of variation, *: Values followed by different letters indicate statistically significant differences Tukey ($P \leq 0.05$), upper case letters are compared horizontally and lowercase vertically.

<table>
<thead>
<tr>
<th>Factors</th>
<th>Total yield</th>
<th>Earliness of the harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate volumes (SV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursery times (NT)</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Culture systems (CS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV x NT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV x CS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT x CS</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>SV x NT x CS</td>
<td></td>
<td>NS</td>
</tr>
</tbody>
</table>

NS: Not significant, *: Significant with $P \leq 0.01$
number of secondary and adventitious roots, which are physiologically more active.

The total yield of *S. lycopersicum* in the composted maguey bagasse substrate and its behavior for substrate volume and residence time of the seedlings in the nursery (Fig. 1c), was similar to the one obtained in soil. This is probably due to the fragile management of fertirrigation in cultivation of substrates compared to the goodness of the soil, as Ojodeagua (2008) states when he compares the culture of *S. lycopersicum* in substrate of tezontle and normal soil.

Earliness of harvest

All volumes of substrate greater than the control (22 cm³) persuaded tomato plants to start early ripening fruit (Fig. 2). Seedling of *S. lycopersicum* produced in containers of 22 cm³ and 30 nursery days reached maximum yield (8.2 kg plant⁻¹); however, the fruit ripening and the beginning of the harvest lasted up to 90 days (Fig. 2). Volumes of substrate larger than 100 cm³ stimulated fruit ripening and harvest began 60 days after transplantation, with a decrease of 30 days compared to the control (Fig. 2). This may be because by increasing the volume of the cavity and therefore the substrate, the flowering and harvest earliness are increased (Cooper et al., 2002; Sanchez et al., 2012). In addition, a larger volume of substrate improves the quality of seedlings, because it has better balance between shoot and root system and no stress post-transplant (Seabra et al., 2004; Oviedo et al., 2012).

CONCLUSIONS

The tomato seedlings produced with a greater volume of substrate and nursery time were the tallest with greater diameter of the stem, length and volume of the root, and dry and fresh root weight. The seedling with lower volume of substrate and residence time in the nursery obtained the highest yield of the fruit, when increasing the volume of substrate and nursery time, yield did not increase.

Seedlings cultivated in normal soil obtained the greatest yield compared to the ones cultivated on agrolite and composted maguey bagasse.

Using seedlings produced with higher substrate volumes and residence times in the nursery, the time from transplant to harvest is reduced, which can be considered as a technological option to increase the culture cycles in greenhouse tomato; however, an economic analysis should be done before implementation.

ACKNOWLEDGMENTS

Thanks to the Instituto Politécnico Nacional of Mexico for funding the research project: SIP: 20110309. (Generation of technological packages of greenhouse tomato culture).
Author contribution
Gabino A. Martínez-Gutiérrez and Isidro Morales conducted the experiments and were responsible for the final review of the manuscript. Cirenio Escamisrosa-Tinoco and Teodulfo Aquino-Bolaños designed the experiments and drafted the manuscript. Martín Hernández-Tolentino participated in the laboratory work and the data analysis. All authors read and approved the final manuscript.

REFERENCES

